Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546790

RESUMO

OBJECTIVES: Evaluate microcalcification detectability in digital breast tomosynthesis (DBT) and synthetic 2D mammography (SM) for different acquisition setups using a virtual imaging trial (VIT) approach. MATERIALS AND METHODS: Medio-lateral oblique (MLO) DBT acquisitions on eight patients were performed at twice the automatic exposure controlled (AEC) dose. The noise was added to the projections to simulate a given dose trajectory. Virtual microcalcification models were added to a given projection set using an in-house VIT framework. Three setups were evaluated: (1) standard acquisition with 25 projections at AEC dose, (2) 25 projections with a convex dose distribution, and (3) sparse setup with 13 projections, every second one over the angular range. The total scan dose and angular range remained constant. DBT volume reconstruction and synthetic mammography image generation were performed using a Siemens prototype algorithm. Lesion detectability was assessed through a Jackknife-alternative free-response receiver operating characteristic (JAFROC) study with six observers. RESULTS: For DBT, the area under the curve (AUC) was 0.97 ± 0.01 for the standard, 0.95 ± 0.02 for the convex, and 0.89 ± 0.03 for the sparse setup. There was no significant difference between standard and convex dose distributions (p = 0.309). Sparse projections significantly reduced detectability (p = 0.001). Synthetic images had a higher AUC with the convex setup, though not significantly (p = 0.435). DBT required four times more reading time than synthetic mammography. DISCUSSION: A convex setup did not significantly improve detectability in DBT compared to the standard setup. Synthetic images exhibited a non-significant increase in detectability with the convex setup. Sparse setup significantly reduced detectability in both DBT and synthetic mammography. CLINICAL RELEVANCE STATEMENT: This virtual imaging trial study allowed the design and efficient testing of different dose distribution trajectories with real mammography images, using a dose-neutral protocol. KEY POINTS: • In DBT, a convex dose distribution did not increase the detectability of microcalcifications compared to the current standard setup but increased detectability for the SM images. • A sparse setup decreased microcalcification detectability in both DBT and SM images compared to the convex and current clinical setups. • Optimal microcalcification cluster detection in the system studied was achieved using either the standard or convex dose setting, with the default number of projections.

2.
Phys Med Biol ; 68(8)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893466

RESUMO

Objective. In mammography, breast compression forms an essential part of the examination and is achieved by lowering a compression paddle on the breast. Compression force is mainly used as parameter to estimate the degree of compression. As the force does not consider variations of breast size or tissue composition, over- and undercompression are a frequent result. This causes a highly varying perception of discomfort or even pain in the case of overcompression during the procedure. To develop a holistic, patient specific workflow, as a first step, breast compression needs to be thoroughly understood. The aim is to develop a biomechanical finite element breast model that accurately replicates breast compression in mammography and tomosynthesis and allows in-depth investigation. The current work focuses thereby, as a first step, to replicate especially the correct breast thickness under compression.Approach. A dedicated method for acquiring ground truth data of uncompressed and compressed breasts within magnetic resonance (MR) imaging is introduced and transferred to the compression within x-ray mammography. Additionally, we created a simulation framework where individual breast models were generated based on MR images.Main results. By fitting the finite element model to the results of the ground truth images, a universal set of material parameters for fat and fibroglandular tissue could be determined. Overall, the breast models showed high agreement in compression thickness with a deviation of less than ten percent from the ground truth.Significance. The introduced breast models show a huge potential for a better understanding of the breast compression process.


Assuntos
Neoplasias da Mama , Compressão de Dados , Humanos , Feminino , Mama/diagnóstico por imagem , Mama/patologia , Mamografia/métodos , Pressão , Simulação por Computador , Neoplasias da Mama/patologia
3.
Phys Med ; 106: 102524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641900

RESUMO

PURPOSE: In mammography, breast compression is achieved by lowering a compression paddle on the breast. Despite the directive that compression is needed, there is no concrete guideline on its execution. To estimate the degree of compression, current mammography units only provide compression force and breast thickness as parameters. Therefore, radiographers could be induced to mainly determine the level of compression based on compression force and apply the same value to all breast sizes. In this case, smaller breast sizes are exposed to higher pressure. This results in a highly varying perception of discomfort or even pain during the procedure, depending on the breast size. METHODS: To overcome this imbalance, current research results suggest that pressure might be a more qualified parameter for a more uniform compression among all breast sizes. To utilize pressure, the contact area between breast and compression paddle must be determined. In this paper, we present an easy-to-implement prototype enabling a real-time pressure-based measure without the need of direct patient contact. Using an optical camera, the contact area between the breast and the compression paddle is automatically segmented by a deep learning model. RESULTS: The model provides a mean pixel accuracy of 96.7% (SD: 2.3%), mean frequency-weighted intersection over union of 88.5% (SD: 6.3%), and a Dice score of 93.6% (SD: 2.2%). The subsequent pressure display is updated more than five times per second which enables the use in clinical routines to set the compression level. CONCLUSION: This prototype could help guiding to an improved breast compression routine in mammography procedures.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Pressão , Mama/diagnóstico por imagem , Dor , Fenômenos Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA